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ABSTRACT
Modern recommender systems employ various sequential modules
such as self-attention to learn dynamic user interests. However,
these methods are less effective in capturing collaborative and
transitional signals within user interaction sequences. First, the
self-attention architecture uses the embedding of a single item as
the attention query, which is inherently challenging to capture
collaborative signals. Second, these methods typically follow an
auto-regressive framework, which is unable to learn global item
transition patterns. To overcome these limitations, we propose a
new method called Multi-Query Self-Attention with Transition-
Aware Embedding Distillation (MQSA-TED). First, we propose an
𝐿-query self-attention module that employs flexible window sizes
for attention queries to capture collaborative signals. In addition,
we introduce a multi-query self-attention method that balances
the bias-variance trade-off in modeling user preferences by com-
bining long and short-query self-attentions. Second, we develop a
transition-aware embedding distillation module that distills global
item-to-item transition patterns into item embeddings, which en-
ables the model to memorize and leverage transitional signals and
serves as a calibrator for collaborative signals. Experimental results
on four real-world datasets show the superiority of our proposed
method over state-of-the-art sequential recommendation methods.
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Figure 1: Performance of three methods w.r.t. item transition
frequency on two datasets. Item Transition performs better
on test samples with frequent transitions, while LightGCN
performs better on test samples lacking transition instances.
SASRec achieves the best performance on average.
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1 INTRODUCTION
In recent years, there has been an increasing focus on modeling
dynamic user preferences in modern recommender systems [2, 30],
which is achieved by incorporating various sequential modules such
as RNN [6], CNN [21], and Transformer [8, 20]. These sequential
recommenders aim to integrate contextual factors derived from
recent user interactions into personalized user interests. Contextual
factors exhibit typical item-to-item transition patterns. The main
challenge in sequential recommendation lies in effectively learning
both personalized user interests and general item transition patterns
while maintaining an appropriate balance between the two factors.
For instance, a user interested in sportswear may also seek a shirt
after purchasing a suit. If we only rely on collaborative signals to
generate recommendations, we may overlook the user’s temporary
need for items to complement their suit. On the other hand, if we
only consider transitional signals to make recommendations, we
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may neglect the user’s primary interest in sportswear. Therefore,
it is crucial to leverage both signals and find a balance between
them. Here we define the collaborative and transitional signals in
the context of sequential recommendation tasks:

Definition 1.1 (Collaborative Signals). In the context of se-
quential recommendation, collaborative signals refer to the similarities
between sequences of users’ interacted items.

Definition 1.2 (Transitional Signals). In the context of se-
quential recommendation, transitional signals refer to the transition
frequency between pairs of users’ interacted items.

Specifically, collaborative signals can be used by following a
sequence-to-item methodology, leveraging the collaborative behav-
ior of users to identify patterns in their interactions and recommend
relevant items. On the other hand, transitional signals exploit item-
to-item relationships in user interaction sequences, enabling the
identification of trigger items that will lead to related purchases.

Although recent sequential recommendation methods such as
SASRec [8] have demonstrated remarkable performance, they still
encounter inherent limitations in effectively capturing both signals
within user interaction sequences. To highlight these limitations,
we conducted experiments comparing the performance of SASRec
with two baseline methods: Item Transition and LightGCN [5].
Item Transition is a memory-based, non-personalized method that
makes recommendations based on the global transition frequency
from the current item to candidate items, serving as a benchmark
based on transitional signals (see Section 3.2 for details). LightGCN
is a state-of-the-art non-sequential recommendation method that
learns user and item embeddings through linear propagation on
the user-item interaction graph, serving as a benchmark based on
collaborative signals. We conducted experiments on two Amazon
datasets, Beauty and Sports [32], and grouped the test samples based
on the transition frequency observed in the training data. Results
shown in Figure 1 reveal two limitations of SASRec in leveraging
both signals:

First, SASRec’s ability to leverage collaborative signals is outper-
formed by LightGCN. For test samples where the item transition
frequency is zero, LightGCN consistently outperforms SASRec on
both datasets. This observation shows the limited ability of SAS-
Rec to generalize to test samples lacking observed item transitions.
Notably, SASRec uses the embedding of the most recent item as
the query in its self-attention module, which can be regarded as an
attention-enhanced first-order Markov chain model that is inher-
ently difficult to leverage collaborative signals.

Second, SASRec’s ability to leverage transitional signals is out-
performed by Item Transition. For test samples where the item
transition frequency exceeds one, i.e., the transition occurs multiple
times in the training data, Item Transition significantly outperforms
SASRec on both datasets. This observation highlights the limited
effectiveness of SASRec in leveraging transitional signals.

Inspired by these observations, we propose a new method called
Multi-Query Self-Attention with Transition-Aware Embedding Distil-
lation (MQSA-TED) for sequential recommendation tasks, which
consists of two main components to capture collaborative and tran-
sitional signals, respectively. First, we propose an 𝐿-query self-
attention module that uses flexible window sizes for attention
queries to capture collaborative signals. By enlarging the window

size 𝐿, the model can leverage similarities between longer-range
sequences of users’ interacted items to generate recommendations.
However, using a large𝐿will result in bias as user interestsmay shift
over time. To strike a balance between bias and variance inmodeling
users’ dynamic interests, we introduce a multi-query self-attention
method by combining long and short-query self-attentions. Sec-
ond, we develop a transition-aware embedding distillation module
that distills global item-to-item transition patterns into item em-
beddings, which serves as a calibration module that enables the
model to effectively memorize and leverage transitional signals
when making recommendations. Notably, our proposed method
achieves inherent disentanglement of user collaboration modeling
and item transition modeling by employing dual supervision: the
original item embedding captures item-to-item transitional signals,
while the item embedding after self-attention modules captures
sequence-to-item collaborative signals. Our contributions in this
paper are summarized as follows:

• We propose an 𝐿-query self-attention module that uses flex-
ible window sizes for attention queries to capture collabo-
rative signals. We also design a multi-query self-attention
method that combines long and short-query self-attentions
to balance the bias-variance trade-off in modeling users’ dy-
namic interests.

• We develop a transition-aware embedding distillation mod-
ule that distills the global item-to-item transition patterns
into item embeddings to capture transitional signals, which
serves as a calibration module for collaborative signals.

• We conduct extensive experiments on four real-world datasets
to show the effectiveness of our proposed method. The re-
sults also highlight the different effects of the proposed two
modules in improving recommendation performances.

2 PRELIMINARIES
2.1 Problem Formulation
The sequential recommendation task aims to predict the next item
that a user will interact with based on their historical interactions.
LetU = {𝑢1, 𝑢2, · · · , 𝑢 |U | } be the set of users, I = {𝑖1, 𝑖2, · · · , 𝑖 | I | }
be the set of items, and 𝑆 (𝑢 ) = [𝑖 (𝑢 )1 , 𝑖

(𝑢 )
2 , · · · , 𝑖 (𝑢 )𝑛𝑢 ] be the interac-

tion sequence of user𝑢, where𝑛𝑢 denotes the length of the sequence.
The problem is formulated as calculating the probability of the next
item being interacted with, given the user’s historical interactions:

𝑝

(
𝑖
(𝑢 )
𝑛𝑢+1 |𝑆

(𝑢 )
)
. (1)

Then the top-N items will be recommended to user𝑢 based on these
probabilities in descending order.

2.2 SASRec
Here we briefly introduce the SASRec [8] model, which is a state-of-
the-art sequential recommender based on the self-attention module
in Transformer [24] and will be used as the base model in our ap-
proach. Given a user interaction sequence of the most recent𝑛 items
[𝑖1, 𝑖2, · · · , 𝑖𝑛] (here we omit the superscript (𝑢) for simplicity), an
embedding matrix E ∈ R | I |×𝑑 is used to convert the sequence into
an embedding sequence [e1, e2, · · · , e𝑛], where 𝑑 is the embedding
size. Then a learnable positional embedding P ∈ R𝑛×𝑑 is added
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Figure 2: Illustration of the proposed MQSA-TED method.
It consists of two main components: 1) Multi-Query Self-
Attention for user collaboration modeling, and 2) Transition-
Aware Embedding Distillation for item transition modeling.

to encode the position information, resulting in [ê1, ê2, · · · , ê𝑛],
where ê𝑡 = e𝑡 + p𝑡 . Next, the transformer [24] module is used as
the encoder:

[ẽ1, ẽ2, · · · , ẽ𝑛] = Transformer( [ê1, ê2, · · · , ê𝑛]), (2)

which adopts multiple blocks of self-attention and feed-forward
networks. The self-attention layer is used to capture the long-term
sequential dependency as follows:

Attention(Q,K,V) = softmax
(
QK𝑇
√
𝑑

)
V, (3)

Q = ÊW𝑄 , K = ÊW𝐾 , V = ÊW𝑉 , (4)

where Q represents the queries, K the keys, V the values, and W𝑄 ,
W𝐾 ,W𝑉 ∈ R𝑑×𝑑 are the projection matrices for queries, keys, and
values, respectively. Finally, the model predicts ranking scores by
taking the dot product between the sequence embedding and the
candidate item embeddings as r̂𝑡 = ẽ𝑡E𝑇 . The cumulative cross-
entropy loss is used for model training as follows:1

L𝑟𝑒𝑐 = −
𝑛∑︁
𝑡=1

r𝑡 log softmax(r̂𝑡 ), (5)

where r𝑡 ∈ R1×|I | is a one-hot vector converted from the index of
the ground truth item at timestamp 𝑡 .

3 METHODOLOGY
In this section, we present the proposed method, which consists of
two main components as illustrated in Figure 2: 1) Multi-Query Self-
Attention for user collaboration modeling, and 2) Transition-Aware
Embedding Distillation for item transition modeling.

1This loss function has been shown more effective than the negative sampling-based
binary cross-entropy loss [13] and we use it for all models in our experiments.

3.1 Multi-Query Self-Attention for User
Collaboration Modeling

We adopt SASRec as our base model owing to its strong ability
to capture long-term sequential dependency and its state-of-the-
art performance in sequential recommendation tasks [8]. SASRec
uses the self-attention module in Transformer [24], whose main
components are the queries, keys, and values, as shown in Equation
(4). Specifically, the attention query at timestamp 𝑡 in SASRec can
be expressed as follows:

q𝑡 = ê𝑡W𝑄 , (6)

where ê𝑡 is the embedding vector of the item at timestamp 𝑖 after
adding the positional embedding, andW𝑄 is a learnable projection
matrix. Then, the attention weights assigned to historical items
[𝑖1, 𝑖2, · · · , 𝑖𝑡 ] at timestamp 𝑡 are determined by the scaled dot-
product between the query embedding and the key embeddings
as shown in Equation (3). Therefore, the attention weights are
dominated by the single item at timestamp 𝑡 , leading to a type of
short-query self-attention.

However, this type of self-attention is limited in leveraging col-
laborative signals, especially when the item at timestamp 𝑡 is incon-
sistent with the user’s primary preference. Specifically, SASRec can
be viewed as a self-attention-enhanced first-order Markov chain
model and its recommendation results can be significantly affected
by a minor change in the order of users’ interacted item sequences,
such as swapping the position of the last two items. In other words,
SASRec may generalize poorly on test samples lacking observed
item transitions. However, real-world recommendation scenarios
such as restaurant recommendations on Yelp have shown that user
interests are relatively stable and less sensitive to the order of sev-
eral recent choices [34] but SASRec may have difficulty coping with
this situation. To address this limitation, we propose an 𝐿-query
self-attention approach. First, we define the 𝐿-query self-attention
as follows:

Definition 3.1 (𝐿-qery Self-Attention). An 𝐿-query self-
attention is a type of self-attention module that uses the embeddings
or their transformed representations of the most recent 𝐿 timestamps’
items (tokens) as the attention query.

Here we use the simple mean-pooling of the embeddings of the
last 𝐿 items at timestamp 𝑡 as the query embedding:

q̃𝑡 = mean-pooling(ê𝑡−𝐿+1, ê𝑡−𝐿+2, · · · , ê𝑡 )W̃𝑄 , (7)

where 𝐿 is a hyperparameter that controls the range of the attention
query. Alternatively, other functions can be used to generate the
query embedding, such as a weighted summation with time decay.

It is important to note that the hyperparameter 𝐿 controls the
range of the historical context in self-attention. Using a large value
of 𝐿 means that the model relies on long-range historical items to
represent user interests, which contributes to capturing collabo-
rative signals but may accumulate bias as user interests may shift
over time. Conversely, using a small value of 𝐿 means that the
model adopts the latest interacted items to represent user inter-
ests but can introduce variance due to the small number of used
items. To balance the bias-variance trade-off, we propose a Multi-
Query Self-Attention (MQSA) method that combines the short-query
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self-attention (with 𝐿 = 1, similar to SASRec) with the long-query
self-attention (with a larger 𝐿) using a hyperparameter 𝛼 :

ẽ𝑡 = 𝛼 · ẽ𝑠ℎ𝑜𝑟𝑡𝑡 + (1 − 𝛼) · ẽ𝑙𝑜𝑛𝑔𝑡 . (8)

Then, the sequence embedding ẽ𝑡 is used along with the embed-
ding of candidate items to predict their ranking scores through dot
product. Notably, we can also allow the model to learn the optimal
𝛼 . However, simultaneously learning the weights and the embed-
dings is challenging due to its inherent complexity. We could also
incorporate more 𝐿s. We leave these for exploration in future work.

It is worth mentioning that the formulation of MQSA shares
similar ideas with some approaches in the literature, such as FPMC
[18] and Fossil [3], which explicitly model long-term user interests
by employing user or item embeddings, respectively, and combine
them with factorized Markov chains for sequential recommenda-
tion tasks. Compared to Fossil which uses the whole interacted
items, MQSA introduces flexible window sizes of the last 𝐿 items to
control the bias-variance trade-off. Furthermore, MQSA employs
self-attention modules to enhance expressiveness, resulting in im-
proved performance compared to the use of pure item embeddings
in Fossil.

3.2 Transition-Aware Embedding Distillation
for Item Transition Modeling

Sequential recommendation models have demonstrated their ef-
fectiveness in enhancing recommendation accuracy by capturing
long-term user interests [6, 8, 32]. However, these models may have
limitations in leveraging the global item-to-item transitional sig-
nals. Specifically, most existing methods follow an auto-regressive
framework [8, 32]. For each user, their preference at timestamp 𝑡 is
learned based on their interacted items up to and including 𝑡 and
then used to predict the item at timestamp 𝑡 + 1. Nevertheless, this
framework fails to enable the model to learn the global item-to-item
transition patterns. In other words, the items not interacted with by
a user are treated equally, without the consideration of the potential
items that the current item 𝑖𝑡 is more likely to trigger.

To address this limitation, we propose a heuristic recommender
based on item transitions and then develop a knowledge distillation
method to integrate these global item transition patterns into se-
quential models. Specifically, we construct a global item transition
graph G = (V, E) where V represents item nodes and E repre-
sents transition edges between items. G is a weighted and directed
graph, where the weight of each edge represents the transition
frequency between two items within a time span 𝑘 , based on all
user interaction sequences. Note that the time span hyperparameter
𝑘 is used to allow for long-term item transition patterns and is set
to 1 by default. We use the adjacent matrix A ∈ R | I |× |I | of G as
the heuristic recommender, where 𝑎𝑖, 𝑗 is the transition frequency
from item 𝑖 to item 𝑗 , as shown in Figure 2. It is a memory-based
non-personalized method that recommends items based on the
transition frequency from the current item to candidate items, as
introduced in our preliminary experiments in Section 1.

To distill the item transitions into the sequential model, we pro-
pose a Transition-Aware Embedding Distillation (TED) method. First,
we normalize the transition frequencies using a row normalization
approach as 𝑎𝑖, 𝑗 =

𝑎𝑖,𝑗
max𝑗 𝑎𝑖,𝑗

. Then, we use a softmax function with

temperature 𝜏 to generate pseudo-labels for knowledge distillation:

ã𝑖 = softmax(ā𝑖/𝜏), (9)

where a higher value of 𝜏 generates a softer probability distribution
over items [7].

We adopt a simple factorization model as the student model,
which predicts the item transition distribution of item 𝑖 by using
the dot product between its embedding vector e𝑖 and the embed-
ding matrix E before the self-attention layers, where the dropout
[19] strategy is also used for robust learning. We apply the soft-
max function with temperature 𝜏 to obtain the predicted transition
probabilities:

â𝑖 = softmax(e𝑖E𝑇 /𝜏). (10)

We use the cross-entropy loss to distill the item transitions into
the sequential model by comparing the predicted and pseudo-label
transition probabilities:

L𝑘𝑑 = −
∑︁
𝑖∈I

ã𝑖 log â𝑖 . (11)

Therefore, the factorization model can learn from the Item Transi-
tion model, enabling the item embeddings to memorize the item
transition patterns. The overall loss function for the full model is:

L = L𝑟𝑒𝑐 + 𝜆𝑘𝑑L𝑘𝑑 + 𝜆Θ | |Θ| |22, (12)

whereΘ is the parameters, 𝜆𝑘𝑑 and 𝜆Θ are the hyperparameters that
control the weights of distillation and 𝑙2 regularization, respectively.

3.3 Discussion
3.3.1 Relationship Between Two Modules. Here we discuss the
relationship between the user collaboration and item transition
modules, and how they complement each other in capturing user
preferences for generating recommendations.

Expressiveness vs. Calibration. The item transition module
learns from a memory-based method that generates potential can-
didate items based on the global transition trends of the current
item. However, it may generalize poorly to the items lacking ob-
served transition patterns. On the other hand, the user collaboration
module is a neural model that employs self-attentions to capture
long-term user preferences and select the most likely next item
based on historical items, resulting in a stronger ability to gener-
alize but a limited ability to memorize and leverage item-to-item
transition patterns. Therefore, the user collaborationmodel requires
the item transition model to act as a calibrator for its predictions.

Disentangled Learning. The user collaboration and item tran-
sition modules are inherently disentangled, as we employ dual su-
pervision where the original item embedding captures item-to-item
transitional signals while the item embedding after self-attentions
captures sequence- to-item collaborative signals.

Retrieval vs. Re-Ranking. The item transition and user col-
laboration modules can be regarded as a retrieval model and a re-
ranking model, respectively. The retrieval model provides insight
into generating potential candidate items, while the re-ranking
model provides insight into selecting the most relevant items for
users based on their respective interaction histories.
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3.3.2 Comparison with Existing Methods. The proposed Transition-
Aware Embedding Distillation (TED) module serves as a calibrator
based on the item transition graph. Here we compare it with recent
graph-based regularization methods:

Graph Regularization (GraReg) [28] is a Euclidean distance-
based regularization term on embedding layers using a 𝑘-nearest
neighbor (𝑘-NN) graph:

L = L𝑟𝑒𝑐 + 𝜆𝑟𝑒𝑔

∑︁
(𝑖, 𝑗 ) ∈E

| |e𝑖 − e𝑗 | |2, (13)

where 𝜆𝑟𝑒𝑔 is the coefficient hyperparameter for graph regular-
ization, and E is the edges in the 𝑘-NN graph. We can use the
transition frequency as the weights of the edges here. Therefore,
GraReg uses the 𝑘 most related items for regularization, leading to
learning localized transition patterns. Additionally, GraReg intro-
duces an alignment loss but lacks a uniformity loss, where related
items should be close to each other while unrelated ones should be
separated [25]. In contrast, TED uses the global item transitions as
the teacher model, enabling the item embeddings to memorize and
leverage transitional signals.

Graph-based Embedding Smoothing (GES) [34] employs
graph convolutions on the global item transition graph for embed-
ding smoothing in sequential recommenders:

E(𝑙+1) = D̃−1/2ÃD̃−1/2E(𝑙 ) , (14)

where Ã = A + I is the adjacency matrix of the item transition
graph with self-loops, D̃ is the degree matrix of Ã, and 𝑙 is the
number of graph convolutional layers. However, stacking multiple
graph convolutional layers may result in over-smoothing problems
[10], potentially leading to a decline in model performance. In com-
parison, TED incorporates a hyperparameter to control the power
of item transition distillation, allowing for flexibility in different
recommendation scenarios.

3.3.3 Model Complexity. Here we analyze the space and time com-
plexity of the proposed model.

Space Complexity. The learnable parameters in SASRec come
from item embeddings, positional embeddings, self-attention lay-
ers, feed-forward layers, and layer normalization. The total number
of parameters in SASRec is O(|I|𝑑 + 𝑛𝑑 + 𝑑2) [8]. Our proposed
model introduces the long-query self-attention, which adds O(𝑑2)
for projection matrices, feed-forward networks, and layer normal-
ization. The embedding distillation module does not add any extra
parameters. Therefore, the space complexity of our proposed model
is the same as that of SASRec.

Time Complexity. The computational complexity of the self-
attention layer and the feed-forward layer in SASRec isO(𝑛2𝑑+𝑛𝑑2).
The cumulative cross-entropy loss has a complexity of O(|I|𝑛𝑑).
Thus, the total computational complexity of SASRec is O(|I|𝑛𝑑 +
𝑛2𝑑+𝑛𝑑2). In our proposed model, the self-attention module has the
same complexity as in SASRec. The embedding distillation module
has a complexity of O(|I|𝑛𝑑). Hence, the time complexity of the
proposed model is the same as that of SASRec with the cumulative
cross-entropy loss.

Table 1: Summary of evaluation datasets. The datasets are
from [32].

Dataset # Users # Items # Actions Density Avg. Len.
Beauty 22,363 12,101 198,502 0.073% 8.88
Sports 25,598 18,357 296,337 0.063% 8.32
Toys 19,412 11,924 167,597 0.072% 8.63
Yelp 30,431 20,033 316,354 0.052% 10.40

4 EXPERIMENTS
We conduct experiments on four real-world datasets to evaluate
the effectiveness of the proposed method.2 The experiments are
designed to answer the following research questions:
RQ1. How does the proposed method compare with state-of-the-

art sequential recommendation methods?
RQ2. How do the hyperparameters and various components affect

the model performance?
RQ3. How does the proposed TED method compare with graph-

based regularization methods?
RQ4. Can the proposed TED method benefit various recommen-

dation models?
RQ5. How do the proposed two modules improve the model per-

formance?

4.1 Experimental Settings
4.1.1 Datasets. We adopt four datasets from [32] for experiments.
The Beauty, Sports, and Toys datasets are from the Amazon Review
Dataset in [4, 16].3 The Yelp dataset is from the Yelp Open Dataset.4
The training data, validation data, and test data are identical to those
used in [32], which follows the leave-one-out evaluation protocol
that treats the last item as the test data, the second last item as the
validation data, and the remaining items as the training data for
each user [8]. The dataset statistics are shown in Table 1.

4.1.2 Baselines. We compare the proposed method with various
types of state-of-the-art baselines in sequential recommendation:

• POP: a non-personalized method that ranks items based on
their popularity.

• LightGCN [5]: a GCN -based method that learns user and
item embeddings through linear propagation on the user-
item interaction graph.

• FPMC [18]: a Markov chain-based method that combines
matrix factorization and factorized Markov chains.

• Caser [21]: a CNN -based method that uses horizontal and
vertical convolutions to learn sequential patterns.

• GRU4Rec [6]: an RNN -based method that uses Gated Re-
current Units (GRU) to model dynamic user preferences.

• SASRec [8]: a unidirectional Transformer-based method that
models user interests using the self-attention module in
Transformer [24].

• BERT4Rec [20]: a bidirectional Transformer-based method
that models user interests using the self-attention module in
BERT [1].

2The codes and datasets are available at https://github.com/zhuty16/MQSA-TED
3https://cseweb.ucsd.edu/~jmcauley/datasets.html
4https://www.yelp.com/dataset
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Table 2: Performance comparison of different methods on four datasets. The best results are in boldface and the second best are
underlined. Asterisk (*) indicates statistically significant improvements over the best baseline determined by a two-sample
t-test (𝑝 < 0.01) after repeating the experiments five times.

Dataset Metric POP LightGCN FPMC Caser GRU4Rec SASRec BERT4Rec FMLP-Rec MQSA-TED Improv.

Beauty

HR@5 0.0077 0.0374 0.0596 0.0359 0.0489 0.0694 0.0419 0.0698 0.0752* 7.23%
NDCG@5 0.0042 0.0247 0.0419 0.0241 0.0342 0.0492 0.0275 0.0488 0.0534* 8.58%
HR@10 0.0135 0.0571 0.0838 0.0511 0.0695 0.0932 0.0647 0.0995 0.1039* 4.44%
NDCG@10 0.0061 0.0311 0.0497 0.0290 0.0408 0.0568 0.0349 0.0583 0.0627* 7.48%
HR@20 0.0217 0.0841 0.1151 0.0720 0.0998 0.1286 0.0992 0.1361 0.1435* 5.40%
NDCG@20 0.0081 0.0379 0.0576 0.0343 0.0484 0.0657 0.0435 0.0675 0.0726* 7.62%

Sports

HR@5 0.0057 0.0252 0.0337 0.0195 0.0221 0.0380 0.0241 0.0415 0.0455* 9.52%
NDCG@5 0.0041 0.0170 0.0234 0.0128 0.0143 0.0267 0.0161 0.0287 0.0320* 11.34%
HR@10 0.0091 0.0384 0.0499 0.0290 0.0357 0.0541 0.0380 0.0598 0.0643* 7.48%
NDCG@10 0.0052 0.0212 0.0286 0.0159 0.0187 0.0318 0.0206 0.0346 0.0380* 9.85%
HR@20 0.0175 0.0576 0.0703 0.0431 0.0548 0.0752 0.0583 0.0847 0.0906* 6.93%
NDCG@20 0.0073 0.0260 0.0337 0.0195 0.0235 0.0371 0.0257 0.0409 0.0446* 9.09%

Toys

HR@5 0.0065 0.0378 0.0664 0.0307 0.0420 0.0736 0.0379 0.0785 0.0834* 6.24%
NDCG@5 0.0044 0.0251 0.0463 0.0224 0.0297 0.0533 0.0244 0.0570 0.0600* 5.31%
HR@10 0.0090 0.0564 0.0925 0.0420 0.0597 0.0989 0.0589 0.1062 0.1130* 6.42%
NDCG@10 0.0052 0.0311 0.0547 0.0260 0.0354 0.0615 0.0312 0.0659 0.0696* 5.56%
HR@20 0.0143 0.0795 0.1212 0.0597 0.0834 0.1299 0.0857 0.1399 0.1503* 7.41%
NDCG@20 0.0065 0.0370 0.0619 0.0305 0.0414 0.0693 0.0379 0.0743 0.0789* 6.23%

Yelp

HR@5 0.0056 0.0290 0.0272 0.0199 0.0211 0.0232 0.0264 0.0270 0.0320* 10.18%
NDCG@5 0.0036 0.0184 0.0173 0.0129 0.0134 0.0151 0.0169 0.0169 0.0205* 11.74%
HR@10 0.0096 0.0486 0.0433 0.0334 0.0367 0.0379 0.0441 0.0446 0.0517* 6.36%
NDCG@10 0.0049 0.0246 0.0224 0.0172 0.0184 0.0198 0.0226 0.0225 0.0269* 8.95%
HR@20 0.0158 0.0790 0.0695 0.0535 0.0603 0.0623 0.0737 0.0721 0.0832* 5.24%
NDCG@20 0.0065 0.0323 0.0290 0.0222 0.0244 0.0259 0.0300 0.0294 0.0348* 7.62%
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Figure 3: Performance curves of SASRec and our proposed
MQSA-TED on four datasets.

• FMLP-Rec [32]: an MLP-based method that is currently the
state-of-the-art sequential recommendation model based on
filter-enhanced MLP.

4.1.3 Evaluation Metrics. We adopt Hit Ratio@N (HR@N) and
NDCG@N to evaluate the performance of the methods on the
sequential recommendation task [31, 32]. We set 𝑁 = 5, 10, 20

by default and report the average scores of users. For each user,
we rank all items except for the positive ones in their training or
validation data [11]. To ensure the robustness of the results, we
randomly initialize each model five times and report the average
performance.

4.1.4 Implementation and Hyperparameter Settings. We implement
all models with TensorFlow and use the cross-entropy loss for all
models for a fair comparison, which has been proved to outperform
the negative sampling-based losses significantly [13]. For common
hyperparameters in all models, the maximum sequence length is
set to 50, the embedding size 𝑑 is set to 64, the learning rate is tuned
in {5e-3, 1e-3, 5e-4, 1e-4}, and the 𝑙2 regularization is tuned in {0,
1e-6, 1e-5, 1e-4, 1e-3}. All models are trained with mini-batch Adam
[9], in the batch sizes of 256. Other hyperparameters of different
models are tuned on the validation set according to the suggestions
in their respective papers. The results of baseline methods under
their optimal hyperparameter settings are reported.

4.2 Main Results (RQ1)
Table 2 presents a performance comparison of different methods.
The results show that, onAmazon datasets, sequential methods such
as FPMC, SASRec, and FMLP-Rec outperform the non-sequential
method LightGCN significantly. Among the sequential methods,
FMLP-Rec performs the best. However, on the Yelp dataset, Light-
GCN outperforms the sequential methods due to the weak se-
quentiality of user interactions on Yelp [34]. Furthermore, our pro-
posed method significantly outperforms all baseline methods, with
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Figure 4: Performance of the proposed MQSA-TED w.r.t. vari-
ous hyperparameters on four datasets.

an average improvement of 6.24% in Hit Ratio@20 and 7.64% in
NDCG@20 compared to the best baseline.

Figure 3 shows the performances of SASRec and our proposed
method with respect to the training epochs. One can observe that
our proposedmethod consistently outperforms SASRec by a notable
margin, showing the effectiveness of the proposed modules.

4.3 Hyperparameter and Ablation Studies (RQ2)
Figure 4 presents the performance of our proposed method with
respect to various hyperparameters and modules:

4.3.1 Length of Long-Query Self-Attention 𝐿. It can be observed the
best 𝐿 depends on the datasets and the model generally performs
well when 𝐿 is in the range of [2, 4], showing the effectiveness of
long-query self-attention in capturing collaborative signals.

4.3.2 Balance of Long and Short-Query Self-Attention𝛼 . The results
show that when 𝛼 is approximately 0.5, the model achieves the
best performance, indicating a proper bias-variance trade-off in
modeling user interests. Notably, when 𝛼 = 1, the model degrades
to SASRec with TED. Therefore, the proposed multi-query self-
attention significantly outperforms the short-query self-attention
used in SASRec with a proper 𝛼 .

4.3.3 Weight of Embedding Distillation 𝜆𝑘𝑑 . It can be seen that the
model performs better when 𝜆𝑘𝑑 is approximately 0.1, demonstrat-
ing the effectiveness of the TED module. Note that when 𝜆𝑘𝑑 = 0,
our proposed method degrades to the MQSA model without TED,
resulting in a significant drop in performance.

4.3.4 Temperature of Embedding Distillation 𝜏 . The results suggest
that the model requires relatively hard pseudo-labels of item tran-
sition distributions for effective knowledge distillation, as the best
performance is achieved when 𝜏 = 0.05 or 𝜏 = 0.1.

Table 3: Performance comparison of the proposed TED mod-
ule with graph-based methods on four datasets. The best
results are in boldface and the second best are underlined.

Dataset Metric MQSA +GES +GraReg +TED

Beauty NDCG@10 0.0599 0.0623 0.0611 0.0627
NDCG@20 0.0694 0.0724 0.0708 0.0726

Sports NDCG@10 0.0344 0.0370 0.0351 0.0380
NDCG@20 0.0408 0.0434 0.0416 0.0446

Toys NDCG@10 0.0654 0.0672 0.0667 0.0696
NDCG@20 0.0749 0.0765 0.0755 0.0789

Yelp NDCG@10 0.0255 0.0244 0.0257 0.0269
NDCG@20 0.0327 0.0320 0.0330 0.0348

Table 4: Performance comparison of LightGCN and FMLP-
Rec w/ and w/o the proposed TED module on four datasets.
The best results under each backbone are in boldface.

Dataset Metric LightGCN +TED FMLP-Rec +TED

Beauty NDCG@10 0.0311 0.0399 0.0583 0.0596
NDCG@20 0.0379 0.0484 0.0675 0.0684

Sports NDCG@10 0.0212 0.0246 0.0346 0.0356
NDCG@20 0.0260 0.0298 0.0409 0.0423

Toys NDCG@10 0.0311 0.0388 0.0659 0.0675
NDCG@20 0.0370 0.0459 0.0743 0.0762

Yelp NDCG@10 0.0246 0.0236 0.0225 0.0226
NDCG@20 0.0323 0.0312 0.0294 0.0296
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Figure 5: Performance of three methods w.r.t. item transition
frequency on two datasets. MQSA-TED outperforms MQSA
on test samples with frequent transitions and outperforms
SASRec-TED on test samples lacking transition instances.

4.4 Comparison with Graph-Based
Regularization Methods (RQ3)

We also compare the proposed Transition-Aware Embedding Dis-
tillation (TED) module with graph-based regularization methods
in Table 3. The results show that most of the methods can im-
prove the performance of MQSA. Specifically, GES performs better
than GraReg on Amazon datasets but worse on the Yelp dataset.
Moreover, our proposed TED method outperforms GES and GraReg
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in most cases, indicating the effectiveness of learning global and
accurate item transition patterns by knowledge distillation.

4.5 Transition-Aware Embedding Distillation
for Various Base Models (RQ4)

We also compare the performance of various base models with and
without our proposed Transition-Aware Embedding Distillation
(TED) module in Table 4. The results demonstrate that TED can
act as a domain adapter, which enhances the performance of the
non-sequential method LightGCN on sequential recommendation
tasks. Furthermore, the incorporation of TED yields remarkable
improvement for the state-of-the-art sequential recommendation
method FMLP-Rec. Notably, TED shows limited effects on the Yelp
dataset due to the weak sequentiality of user interactions. In other
words, transitional signals are less important in this dataset.

4.6 Performance Comparison by Groups (RQ5)
Figure 5 presents the performance of different methods on test
samples grouped by transition frequencies observed in the train-
ing data from the validation item (the second last item) to the
test item (the last item). We evaluate the SASRec model with the
Transition-Aware Embedding Distillation (SASRec-TED), the Multi-
Query Self-Attentionmodel (MQSA), and the full MQSA-TEDmodel.
Compared with the results in Figure 1, the improvement of MQSA
over SASRec mainly results from the improvement on test samples
lacking transition instances. However, the integration of long-query
self-attention may hurt the performance on test samples with fre-
quent transitions. By incorporating the TED module as a calibrator,
MQSA-TED performs better than MQSA mainly on test samples
with high transition frequencies. As MQSA and TED focus on col-
laborative and transitional signals, respectively, their combination
will result in a reasonable balance between the two signal types.

5 RELATEDWORK
Sequential Recommendation. Sequential recommendation meth-
ods aim to capture dynamic user preferences [26]. Early efforts
adopt Markov Chains (MCs) to learn item transition patterns, such
as FPMC [18], which combines the Matrix Factorization (MF) with
the first-order Markov chain. Fossil [3] fuses the similarity-based
model with high-order Markov chains. Recent efforts incorporate
deep learning-based models, such as GRU4Rec [6], which employs
Gated Recurrent Units (GRU), and NARM [14], which enhances
GRU with an attention mechanism. Caser [21] uses horizontal and
vertical convolutional filters to learn sequential patterns. SASRec
[8] and BERT4Rec [20] use unidirectional and bidirectional self-
attention modules in Transformer [24] to capture long-term user
interests, respectively. FMLP-Rec [32] is an all-MLP model with
learnable filters in the frequency domain. However, previous efforts
typically follow an auto-regressive framework, which neglects the
valuable information in global item transition patterns. In this pa-
per, we propose a Transition-Aware Embedding Distillation module
to memorize and leverage the transitional signals.

Self-Attention in Recommendation. The Transformer archi-
tecture has achieved remarkable success in modeling long-term
dependencies in Natural Language Processing (NLP) [1, 24]. Conse-
quently, recent efforts employ self-attention networks for sequential

recommendation tasks. For example, SASRec [8] and BERT4Rec [20]
use unidirectional and bidirectional self-attention modules to cap-
ture long-term user interests, respectively. In addition, some efforts
aim to enhance self-attention-based models by incorporating side
information. For instance, TiSASRec [15] incorporates time interval
embeddings into SASRec. S3-Rec [31] introduces self-supervision
tasks to learn correlations among attributes, items, sub-sequences,
and sequences based on mutual information maximization. SASRec-
GES [34] employs graph convolutions on sequential and semantic
item graphs to generate smoothed item embeddings. Efforts have
also been made to improve the efficiency or effectiveness of SASRec.
CL4SRec [27] uses contrastive learning to derive self-supervision
signals from user interaction sequences. DuoRec [17] develops a
contrastive regularization with model-level augmentation and su-
pervises positive sampling for contrastive samples. Despite these
advances, previous studies paid less attention to the limitations of
the conventional self-attention architecture in capturing collabora-
tive signals. In this paper, we propose a Multi-Query Self-Attention
method that combines long and short-query self-attentions to en-
hance its effectiveness in modeling user collaborations.

Knowledge Distillation in Recommendation. Knowledge
distillation is a widely-used model compression technique in vari-
ous fields [7], where a student model is trained with both a ground-
truth label distribution and a smoothed pseudo-label distribution
generated by a teacher modelRecent efforts apply this method to
recommender systems, such as Ranking Distillation [22], which
trains a student model to rank items based on both training data
and teacher model predictions. Collaborative Distillation [12] uses
probabilistic rank-aware sampling with teacher-guided and student-
guided training strategies. Other existing methods aim to distill side
information into recommendation models to enhance their perfor-
mance and interpretability. For instance, SCML [33] combines the
item-based CF model with the social CF model by embedding-level
and output-level mutual learning. DESIGN [23] integrates informa-
tion from the user-item interaction graph and the user-user social
graph and makes them learn from each other. Zhang et al. [29]
propose a joint learning framework to distill structured knowledge
from a path-based model into a neural model. However, knowledge
distillation has received less attention in the context of sequential
recommendation. In this paper, we distill the knowledge of item
transitions into sequential models to enhance their performances.

6 CONCLUSION
In this paper, we investigate the limitations of existing sequential
recommendation methods in capturing collaborative and transi-
tional signals in user interaction sequences. To overcome these
limitations, we propose a new method called Multi-Query Self-
Attention with Transition-Aware Embedding Distillation (MQSA-
TED). To capture collaborative signals, we introduce an 𝐿-query
self-attention module using flexible window sizes for attention
queries and combine long and short-query self-attentions. In addi-
tion, we develop a transition-aware embedding distillation module
that distills global item transition patterns into item embeddings,
enabling the model to memorize and leverage transitional signals.
Experimental results on four real-world datasets demonstrate the
effectiveness of both modules in improving model performance.
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